
A Probable Case of Incipient Speciation in Schizocosa Wolf
Spiders Driven by Allochrony, Habitat Use,

and Female Mate Choice

R. Tucker Gilman,1,* Kasey Fowler-Finn,2 and Eileen A. Hebets3

1. School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PL, United Kingdom; 2. Department of
Biology, Saint Louis University, Saint Louis, Missouri 63103; 3. School of Biological Sciences, University of Nebraska,
Lincoln, Nebraska 68588

Submitted November 28, 2017; Accepted February 14, 2018; Electronically published June 28, 2018

Online enhancements: appendix, supplemental material. Dryad data: http://dx.doi.org/10.5061/dryad.qc6176k.

abstract: There is growing evidence that speciation can occur be-
tween populations that are not geographically isolated. The emer-
gence of assortative mating is believed to be critical to this process,
but how assortative mating arises in diverging populations is poorly
understood. The wolf spider genus Schizocosa has become a model
system for studying mechanisms of assortative mating. We conducted
a series of experiments to identify the factors that control mate pair
formation in a Schizocosa population that includes both ornamented
and nonornamented males. We show that the population also includes
two previously unrecognized female phenotypes. One female pheno-
type mates mostly or exclusively with ornamented males, and the other
mates mostly or exclusively with unornamented males. Assortative
mating within these groups is maintained by differences in matura-
tion time, microhabitat use, and female mate preference.We conclude
that the population is not a single species, as previously believed, but
rather an incipient species pair with multiple overlapping mecha-
nisms of reproductive isolation. The identification of a new incipient
species pair in the well-studied and rapidly speciating Schizocosa clade
presents new opportunities for the study of speciation without geo-
graphic isolation.

Keywords: speciation, assortative mating, mate choice, allochrony,
habitat choice, Schizocosa.

Introduction

Speciation is the process by which reproductive isolation
evolves within and among populations (Coyne and Orr
2004). It has helped shape Earth’s biodiversity (Wiens and

Donoghue 2004) and can both create andfill ecological niches
(Schluter 2000; Nosil 2012). For these reasons, speciation is of
great interest to evolutionary biologists and ecologists alike,
and understanding the mechanisms that underlie speciation
has been a major goal of researchers since Darwin (1859).
There are many examples of speciation in allopatry, where
physical isolation prevents gene flow between diverging pop-
ulations (Coyne and Orr 2004). There are fewer well-
documented examples of speciation when gene flow is not
interrupted by physical barriers (Coyne and Price 2000;
Bolnick and Fitzpatrick 2007), and the mechanisms that
promote speciation in such cases are not fully understood
(Bolnick and Fitzpatrick 2007; Gavrilets 2014).
Assortative mating (i.e., the tendency to mate with indi-

viduals phenotypically or genetically similar to oneself) is
believed to be critical to speciation without geographic
isolation in sexually reproducing animals (Schluter 2000;
Coyne and Orr 2004; Nosil 2012). By inhibiting mating be-
tween subpopulations, assortative mating allows the geno-
types of those subpopulations to diverge. Assortative mat-
ing can arise when the members of diverging populations
use their habitats differently in time or in space (Fitzpatrick
et al. 2008). For example, different populations of Madeiran
storm petrels (Oceanodroma castro) on the same island
breed at different times, resulting in a nearly complete lack
of gene flow between them (Friesen et al. 2007). In contrast,
some flies in the genus Rhagoletis are active in the same
habitat at the same time but breed on different host plants,
causing assortative mating based on microhabitat use (Fe-
der and Bush 1989; Feder et al. 1989; Dres and Mallet 2002).
Differences in the use of time and space among subsets of
animals in formerly randomlymating populations are believed
to have been important in some speciation processes (e.g.,
Feder and Bush 1989; Friesen et al. 2007).
Mate preferences, whether learned or genetically deter-

mined, can also promote assortative mating. Mate prefer-
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ence learning can occur at different life-history stages, and
which mate preferences are learned can depend on the so-
cial environment (reviewed in Hebets and Sullivan-Beckers
2010). For example, in some sticklebacks (e.g., Gasterosteus
aculeatus) and cichlids (e.g., Mbipia spp., Apistogramma
cacatuoides), females learn as juveniles to prefer mates that
are genetically similar to themselves by observing the phe-
notypes of their parents (Verzijden et al. 2008; Kozak and
Boughman 2009; Romer et al. 2014). In other species, such
as the fruit flies Drosophila persimilis and Drosophila me-
lanogaster and the Japanese quail Coturnix coturnix japon-
ica, adults (often males) learn mate preferences from suc-
cess or failure in previous mating attempts (Nash and
Domjan 1991; Dukas 2008; Verzijden et al. 2015). In such
cases, experienced males tend not to court females with
phenotypes similar to those that have rejected them in the
past, and mate preference learning by males can strengthen
assortative mating that arises due to female mate pref-
erences (Dukas 2008). In still other species, the ability to
mate assortatively is genetic. For example, in the cricket
frog Acris crepitans, females have genetic preferences for
the courtship displays of males from their own populations
(Ryan and Wilczynski 1988). Similarly, pied flycatchers
(Ficedula hypoleuca) are able to identify and select conspe-
cific mates even if they have been cross fostered by other
species (Slagsvold et al. 2002; Slagsvold 2004).

Mate preferences can be based on any phenotype that
differs among potential mates and that choosy individuals
can perceive (Kilmer et al. 2017). Such phenotypes can in-
clude visual (e.g., coloration, patterning, ornament size,
body size, movement), acoustic (e.g., song characteristics),
and chemical (e.g., pheromone profiles) cues. Which phe-
notypes are used in mate choice and how strongly mate
preferences are expressed can depend on the environment
in which mates are evaluated (Miller and Svensson 2014).
For example, three-spined sticklebacks (G. aculeatus) base
their mate choice on visual cues (including courtship be-
havior; Candolin 1997) when the water is clear but on olfac-
tory cues when the water is turbid, andmate choice patterns
under these two conditions may not coincide (Heuschele
et al. 2009). In green swordtails (Xiphophorus helleri), pred-
ator exposure influences femalemate choice: females switch
their mate preference frommales with long swords to males
with swords removed following exposure to predation on
conspecific males with long swords (Johnson and Basolo
2003). Environmental conditions can also affect the strength
of assortative mating. For example, brown trout (Salmo
trutta) in experimental manipulations were more likely to
choose mates from their own populations when mating oc-
curred in highly variable flow regimes than in constant flow
regimes (Gauthey et al. 2016).

The evidence presented above shows that assortative
mating can arise from differences in reproductive timing

(i.e., allochrony), microhabitat use, and learned or genetic
mate preferences. Moreover, it is possible and even likely
for multiple mechanisms to operate in the same system.
In this article, we explored several potential mechanisms
of assortative mating in Schizocosa wolf spiders. In particu-
lar, we focused on an intriguing population with two male
morphotypes that exhibit different phenotypes and court-
ship behaviors.

The Schizocosa System

Schizocosa (family Lycosidae) is a genus of cursorial wolf
spiders. The genus includes ∼58 species and is globally dis-
tributed (World Spider Catalog 2017), but the monophyly
of the genus—particularly of the species from outside North
America—has been questioned (Stratton 2005). Most Schi-
zocosa are univoltine. The exact phenology varies among
species and populations, but in many species mated females
produce egg sacs in late spring or early summer and then
guard or carry their egg sacs attached to their spinnerets
(Dondale 1977). Eggs hatch and juveniles emerge in mid-
to late summer, and offspring are carried on the female’s ab-
domen for up to 2 weeks before dispersing (Montgomery
1903; Dondale 1977). Adult males die earlier than females,
but adults of both sexes die by late summer, and offspring
overwinter as juveniles (Montgomery 1903; Dondale 1977;
Uetz and Denterlein 1979). In the spring, juveniles mature
and mating occurs (Dondale 1977). The mating behavior
of several North American Schizocosa species has been well
studied and is variable and often elaborate (Montgomery
1903; Uetz and Denterlein 1979; Stratton and Uetz 1981;
Stratton 1991, 1997; Hebets et al. 1996; Scheffer et al. 1996;
Hebets 2003; Hebets and Vink 2007; Vaccaro et al. 2010;
Hebets et al. 2013; Fowler-Finn et al. 2015). As a result,
the genus has become a model for studying courtship and
mate selection in invertebrates (Herberstein and Hebets
2013).
In the Ohio Valley of the United States, some Schizocosa

populations include sexually mature males that possess ei-
ther (i) tufts or brushes of dark hair on the tibiae of their
forelegs or (ii) no tufts or pigmentation on their foreleg tib-
iae (Dondale and Redner 1978). Tufts appear at sexual ma-
turity and are believed to be sexual ornaments (Uetz and
Denterlein 1979; Uetz 2000; Uetz and Norton 2007). Each
adult male morphotype produces a distinct stereotyped
courtship display (Stratton and Uetz 1981, 1986), but the
two male morphotypes are not distinguishable by genital
morphology, body size, or body color (Stratton and Uetz
1981). Females in these populations have no tufts and no
distinguishable morphotypes (Stratton and Uetz 1981).
Nonetheless, Uetz and Dondale (1979) showed that each
male phenotype is associated with a cryptic population of
females, and the two male-female population pairs are re-

000 The American Naturalist

This content downloaded from 134.053.085.242 on June 28, 2018 14:19:32 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



productively isolated. Thus, despite the morphological sim-
ilarity between females, the populations have been classified
as separate species: the ornamented species is S. ocreata,
and the nonornamented species is S. rovneri (Uetz and
Dondale 1979). Studies in the 1970s and 1980s demonstrated
that reproductive isolation between the species is main-
tained by strong female preferences for conspecific mating
displays (Uetz and Denterlein 1979; Stratton and Uetz
1981, 1986), and recent molecular work has confirmed that
S. ocreata and S. rovneri are genetically distinct (Fowler-
Finn et al. 2015). Thus, the species pair is an example of be-
havioral isolation.

Decades after the work that established S. ocreata and
S. rovneri as separate species, a Schizocosa population in
Oxford, Mississippi, was discovered that includes both orna-
mented (cf. S. ocreata) and nonornamented (cf. S. rovneri)
males (Hebets and Vink 2007). Ornamented and nonor-
namented males in this population were subsequently found
to be genetically distinct from S. ocreata and S. rovneri but
not from each other (Fowler-Finn et al. 2015). The popula-
tion has been hypothesized to be panmictic with the com-
peting morphotypes maintained by frequency-dependent
natural selection (Deng et al. 2014). If reproductive isola-
tion exists between the morphotypes in this population,
the lack of genetic divergence at rapidly evolving micro-
satellite markers suggests that it is either less complete or
more recent than the reproductive isolation between S.
ocreata and S. rovneri.

In both the Ohio Valley Schizocosa population and the
Oxford Schizocosa population, ornamented and nonor-
namented males differ in their phenology and habitat use.
In the Ohio Valley, ornamented S. ocreata males mature
2–3 weeks earlier than nonornamented S. rovneri males
(Uetz and Denterlein 1979). The two species can be found
syntopically, but S. rovneri is more common in floodplains
and S. ocreata is more common in upland habitats (Uetz
and Denterlein 1979; Stratton and Uetz 1986). There is pre-
liminary evidence for partial allochrony of male mor-
photypes in the Oxford population, but the direction is op-
posite that in the Ohio Valley: ornamented males in the
Oxford population mature ∼7 days later than nonorna-
mented males (Hebets and Vink 2007). In the Oxford pop-
ulation, ornamented males are found more frequently on
rocky substrate, and nonornamented males are found more
frequently on leaf litter (Deng et al. 2014). This difference
may be due to habitat choice rather than differential mor-
tality, as the two male morphotypes show equal survival on
either substrate (Fowler-Finn andHebets 2011b).While male
morphotypes in the Oxford population differ in maturation
time and microhabitat use, no studies have yet explored
how these differences influence mate pair formation.

Female mate preferences are also known to affect mate
pair formation in the Ohio Valley and Oxford Schizocosa

populations. In both populations, females have genetic pref-
erences for the courtship displays of particular male mor-
photypes. Studies that have attempted to mate individuals
of known parentage have found that females mate prefer-
entially with males that match their fathers’ phenotypes
(Stratton and Uetz 1986; Fowler-Finn et al. 2015). In addi-
tion to genetic preferences, roles for mate choice learning
have been suggested in these populations (Hebets 2003;
Hebets and Vink 2007; Fowler-Finn et al. 2015; Stoffer and
Uetz 2016a, 2016b). Within S. ocreata, females can learn to
prefer different male ornament sizes based on previous
courtship experience (Stoffer and Uetz 2016a, 2016b), but
courtship experience does not influence preference for con-
specific mates in either S. ocreata or S. rovneri (Rutledge and
Uetz 2014). In theOxford population, researchers have sug-
gested that both juvenile experience and mate choice copy-
ing may help to shape female mate preferences for particu-
lar male phenotypes (Hebets and Vink 2007; Fowler-Finn
et al. 2015).

Research Objectives

Our goal in this study was to identify the factors that con-
tribute to mate pair formation in the Oxford Schizocosa
population. We analyzed a data set that was collected more
than 12 years ago for this purpose, and we identified the
factors that predict (i) male and female sexual maturation
times, (ii) whether males court a given female, (iii) whether
females mate when courted, and (iv) which male mor-
photype females choose. Our results suggest that, in ad-
dition to its two male morphotypes, the Oxford Schizo-
cosa population includes two female maturation groups.
Each female maturation group mates preferentially with a
particular male morphotype, and these male-female pairs
comprise incipient species. Our results show that multiple
coinciding mechanisms can combine to promote reproduc-
tive isolation even very early in the speciation process, and
this will help to make the Oxford Schizocosa population a
model system for studying the evolution of reproductive iso-
lation.

Methods

Spider Collection and Rearing

We collected 460 immature Schizocosa near the Ole Miss
greenhouse, Oxford, Mississippi, on the nights of March 19
and 21 and during the day on March 21, 2005. We collected
spiders from rock litter adjacent to the greenhouse building
and from leaf litter ∼100 m from the building. We recorded
the substratum type (rock or leaf litter) from which each spi-
der was collected. The site has been repurposed since 2005,
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and the exact locations where we collected spiders are no lon-
ger available.

Rearing Environment

Exposure to other spiders during the juvenile stage can af-
fect mate preference in Schizocosa (Hebets 2003; Stoffer and
Uetz 2016a) and maturation rate in other spiders (Kasu-
movic and Andrade 2006). Given the previously observed
differences in maturation rate between ornamented and
nonornamented males in the Oxford population (Hebets
and Vink 2007), we wanted to explore the influence of juve-
nile exposure to other spiders on mate choice and matura-
tion rate in this population. To do this, we manipulated the
environment to simulate different exposure rates that
spiders might encounter in the wild. We assigned spiders
to one of three treatments: (i) central (N p 64), (ii) periph-
eral (N p 256), or (iii) isolated (N p 140). Central and pe-
ripheral spiders, set up as in figure 1, were exposed to visual
and chemical cues from other spiders, while isolated spiders
were not. Each central spider was placed in a 6 cm#6 cm#
8 cm plastic box (AMAC Plastic Products, Petaluma, CA).
Next to each side of each central spider’s box, we placed a
similar box containing a peripheral spider. The walls of
the boxes were clear, so visual signals could be sent and re-
ceived between adjacent spiders. To provide chemical cues,

we used pieces of flat wooden craft sticks to collect depos-
ited silk and excreta. We cut the craft sticks into equal-sized
pieces and placed four pieces at the bottom of each individ-
ual’s box. After 3–4 days of collecting chemical cues, one
piece of stick was removed from each peripheral spider’s box
and placed in the central spider’s box, and each of the four
pieces from the central spider’s box was removed and placed
in one of the peripheral spiders’ boxes. The silk-laden pieces
remained in the boxes for ∼4 days. We repeated this process
with new wooden craft sticks each week for the duration of
the experiment. Thus, central spiders received constant vis-
ual and periodic chemical cues from four peripheral spiders,
while peripheral spiders received constant visual and periodic
chemical cues from one central spider. Isolated individuals
were placed in boxes of the same size but were visually iso-
lated from other spiders. Pieces of wooden craft sticks were
placed at the bottom of each isolated spider’s box and were
replaced with new pieces every time the sticks were replaced
for central and peripheral spiders. This ensured that distur-
bancewas similar across treatments but did not expose isolated
spiders to the deposited silk or excreta of other spiders. Some
spiders use airborne pheromones to communicate mating sta-
tus (e.g., Watson 1986). Because all spiders were reared in the
same laboratory space we cannot guarantee that the spiders
we called isolated were not exposed to airborne pheromones,
although no such pheromones have been shown to exist in

A B

Figure 1: Rearing arrangement. Spiders were raised in 6 cm#6 cm#8 cm clear plastic boxes. To expose spiders to conspecifics, boxes were
arranged in quintuples as shown (64 quintuples, 320 spiders). Every 7 days, we placed four pieces of clean flat wooden craft sticks on the
bottom of each box (A). After 3–4 days, craft stick pieces were exchanged between adjacent boxes (B). Thus, peripheral spiders were exposed
to constant visual and periodic chemical signals from one central spider, and central spiders were exposed to constant visual and periodic
chemical cues from four different peripheral spiders. Isolated spiders (140 spiders, not pictured) were reared in similar boxes but were vi-
sually isolated and experienced no exchange of craft sticks with other spiders.
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Schizocosa. We checked spiders at least every other day to
monitor molting and maturation times. Spiders were main-
tained in their treatments without interruption until sexual
maturity and then throughout the mate choice experiments.
We observed courtship displays by males in the rearing
chambers, but we made no attempt to count or record these.
However, given these observations, we believe females that
were reared next to males are likely to have encountered
courtship displays.

In preliminary analyses, we found no difference in the
maturation time or mating behavior of central and periph-
eral spiders (see fig. S1; figs. S1, A1 are available online).
Therefore, in subsequent analyses we combined these treat-
ment groups, leaving us with two exposure treatments: ex-
posed and isolated.

Mate Choice Trials

Each mate choice trial took place in a circular plastic arena
(diameter, 20.3 cm; height, 7.6 cm; Pioneer Plastics, Dixon,
KY). Spiders in the Oxford population can be found on rocky
substrates or on leaf litter and are active at different times of
the day, thus encountering different light conditions. There-
fore, we wanted to test the influence of the physical environ-
ment on mate choice. We manipulated both the substrate
and the light environment in mating trials in a fully crossed
2#2 design. Arenas were filled with a single substrate (i.e.,
either rock litter or leaf litter collected from the Oxford
site) to a depth of ∼5 cm, and trials were conducted either
in the light or in the dark. Light trials were conducted on a
benchtop underneath a skylight that provided natural light,
and dark trials were conducted behind a black curtain that
blocked all light and were observed with an infrared camera.
No attempt was made to standardize natural light condi-
tions in response to time of day or weather.

Prior to the start of each trial, one female was placed in
the mating arena with the substrate and light environment
to which she had been randomly assigned, and she was
allowed to acclimate for 5 min. Then one ornamented and
one nonornamentedmale were simultaneously placed on op-
posite sides of the arena, as far from the female and from
each other as possible. We allowed all three spiders to in-
teract freely for 45 min, and we recorded (i) whether each
male courted, (ii) which male courted first, (iii) whether the
female mated, and (iv) which male she mated with if she
mated. Each female participated in only one mating trial,
but due to a shortage of available males some males partici-
pated in two trials. In 148 mating trials with two males per
trial, 156 males were used once and 70males were used twice.
We allowed at least 2 days between mating trials for the same
male, and no male was paired with the same competing male
more than once.Whenmale identity was treated as a random
effect in subsequent analyses, it did not affect our response

variables (likelihood ratio tests, P 1 :99). We tested for main
effects of previous courtship or mating experience in each
analysis.

Statistical Analyses

There are many factors that might influence spider matu-
ration rates and mating decisions (e.g., male morphotype
[Hebets and Vink 2007] and spider age, mass, and juvenile
experience [Uetz and Norton 2007]; see the figures in “Re-
sults” for full lists of the factors we studied and tables S1–S5
[tables S1–S6, A1 are available online] for the numbers of
spiders in each class when factors were categorical; full data
sets have been deposited in the Dryad Digital Repository:
http://dx.doi.org/10.5061/dryad.qc6176k [Gilman et al. 2018]).
Therefore, we analyzed our data using a factor selection ap-
proach. Factor selection aims to identify strong relation-
ships between possible predictors and response variables
rather than to test specific a priori hypotheses. The results
offer insight into the behavior of complex systems and pro-
vide testable hypotheses for further study (Burnham and
Anderson 2002). There is no consensus on the best method
of factor selection. Therefore, we performed both infor-
mation theoretic (Burnham and Anderson 2002, 2004) and
lasso (least angle shrinkage and selection operator; Tibshi-
rani 1996) analyses. Either method can produce false pos-
itives, but if both methods identify the same predictor as
important, then we can have more confidence that the pre-
dictor is meaningful than if it were identified by only one
method. We used our analyses to identify predictors asso-
ciated with each of four biological responses: (i) the num-
ber of days from collection to maturity, (ii) whether a male
courted in a mating trial, (iii) whether a female mated in a
mating trial, and (iv) if a female mated, whether she mated
with the ornamented or nonornamented male in her trial.
To implement the information theoretic approach, we fit

linear regressions (for days to maturity) or logistic regres-
sions (for other response variables) that included every pos-
sible combination of the predictors we studied for each
response variable. We calculated Akaike’s information cri-
terion corrected for small sample size for each fitted model,
and we found each model’s Akaike weight. For each pre-
dictor, we summed the weights of all the models in which
that predictor appears to obtain the summed weight for that
predictor. Summed weight measures the probability that the
predictor appears in the bestmodel, given the set of all models
studied. To estimate the effect size of each predictor on the
response variable, we averaged its effect size across all models
in which it appears, with each model weighted according to
its Akaike weight. Finally, we calculated the confidence distri-
bution for the effect size of each predictor in each model in
which it appears (Xie and Singh 2013). We weighted these
distributions by the Akaike weights of the models and
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summed across all models in which the predictor appears to
obtain the unconditional confidence distribution for the ef-
fect size of that predictor.

We compared the results of our information theoretic
analysis to those of a lasso analysis. Lasso finds the model
that best describes the data using potentially all predictors,
subject to the constraint that the sum of the scaled effect
sizes across all predictors is less than a tuning parameter
s. We used cross validation to find the value of s that best
describes the data without overfitting. Predictors that have
nonzero effect sizes in this model are interpreted to have
an effect on the response variable. We conducted the lasso
analysis in R using the packages glmnet (Friedman et al.
2010) and hierNet (Bien et al. 2013).

For days tomaturity, the number of biologically plausible
predictors is small, and we considered all pairwise inter-
actions between first-order predictors in our analyses. Our
results are qualitatively unchanged if we exclude interac-
tions from the analyses. For other analyses, the number of
plausible predictors is large, and the number of possible
pairwise interactions exceeds the number of observations
in the data set. When the total number of predictors and in-
teractions approaches or exceeds the number of observa-
tions, factor selection tends to identify spurious predictors
(Freedman 1983; Anderson and Burnham 2002). Therefore,
we focused on first-order predictors and excluded inter-
actions in these analyses.

The residuals of the best-fit model for days to maturity in
females (but not in males) are bimodally distributed. We
used model-based clustering, implemented in R with the
package mclust (Fraley and Raftery 2002), to find the max-
imum likelihood distributions of (i) days to female maturity
and (ii) the residuals of days to maturity fitted against fe-
male origin. Then we calculated the probability that each fe-
male in the data set belonged to the early- or late-maturing
group on the basis of her observed days to maturity. Having
done this, we wanted to know whether females collected
from leaf litter were more likely to belong to the early-
maturing group (as is the case for males). Because the as-
signment of females to maturation groups is probabilistic
rather than absolute, we could not use a x2 test to look for
an association between female origin and maturation
group. Therefore, we used a Monte Carlo analysis. Wemain-
tained the group assignment probabilities and randomized
the observed collection substrates among all females in the
data set, and we calculated the mean probability with which
females from leaf litter belonged to the early-maturing group.
We repeated this process 105 times to obtain a null distribu-
tion of association strengths that we could have obtained by
chance alone.We compared the observed data to this null dis-
tribution to assess the significance of the relationship.

Our analysis of male courtship includes one extreme
outlier. One male did not court, even though all plausible

models predict that his probability of courting was greater
than 0.9999. Excluding this outlier from the analysis does
not change our qualitative results. We present results with
the outlier included. Results with the outlier excluded are
shown in figure S2.

Estimating the Strength of Prezygotic
Reproductive Isolation

Analysis of our empirical data suggests that the Oxford
Schizocosa population comprises two maturation groups
that are partially reproductively isolated by a combination
of allochrony, habitat use, and female mate choice (see
“Results”). To study the strength of prezygotic reproductive
isolation arising from these mechanisms, we constructed a
dynamical systems model that simulates maturation, hab-
itat use, and mating in the wild population for one genera-
tion (appendix, available online). We used this model to es-
timate the proportion of females from each maturation
group that accept mates from the other maturation group.

Results

Maturation Time

We recorded days to maturity for 192 male and 193 female
spiders. The predictors of male maturation time are shown
in rows 1–6 of figure 2. Nonornamented males matured
8.9 days earlier than ornamented males. There was no evi-
dence that any other predictor affectedmalematuration time,
but males collected from rocks were more likely than males
collected from leaf litter to belong to the ornamented (i.e.,
late-maturing) group (73% vs. 44%; x2 p 15:08, df p 1,
P p :0001).
The predictors of female maturation time are shown in

rows 7–9 of figure 2. There was a weak trend toward later
maturation in females collected from rocks. Female matu-
ration times were bimodally distributed (fig. 3). The earlier
female mode matured at ∼30 days, in synchrony with the
nonornamented males, and the later mode matured at
∼49 days, nearly 10 days after the ornamented males. Fe-
males collected from leaf litter were more likely than fe-
males collected from rocks to belong to the early-maturing
group (105 Monte Carlo simulations, P p :0392), but fe-
male origin does not explain the bimodality in maturation
times (table S6).

Male Courtship

We analyzed data from 148 mating trials. The predictors of
male courtship are shown in figure 4. In 86 of 87 trials
where one male courted, the other male also courted. In
73 of 74 trials where males were presented to females that
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had been reared in isolation, both males courted. Thus,
courtship by a competing male and the juvenile social envi-
ronment of the female were strong predictors of male court-
ship. Males were more likely to court females that had more
recently reached sexual maturity (1.1#d21 since maturity)
and females collected from rocks (4.6#). Ornamented males
were 3.1 times more likely than nonornamented males to
court first. Some males were used in multiple mating trials.
Our lasso analysis suggests that males were more likely to
court in their first trial than in subsequent trials if trials were
illuminated and if trials were conducted on leaf litter sub-
strate. The information theoretic analysis provides only weak
support for the effects of prior trials, illumination, and sub-
strate on courtship probability.

Female Mating

Females mated in 80 of 148 mating trials (i.e., 54%). The
predictors of whether a female mated are shown in figure 5.
The best predictor of whether a female mated was whether
she was courted: females that were courted were 67 times
more likely tomate than females that were not courted. Older
and larger females weremore likely tomate than younger and
smaller females (1.2#d21 since capture and 1.02#mg21, re-
spectively). The information theoretic analysis, but not the
lasso analysis, suggests that females were more likely to mate

if there was at least one young male in the trial (0.90#d21 of
younger male age) and were more likely to mate if they had
been reared with exposure to other spiders (7.4#). The lasso
analysis suggests that females were more likely to mate in
trials conducted on leaf litter, if they were collected from
rocks, or if they had been exposed to males as juveniles.
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Figure 3: Distribution of days to maturity for females collected
from leaf litter (light gray bars) and rocks (dark gray bars). The black
line shows the maximum likelihood bimodal distribution of the data.
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Figure 2: Predictors of days to maturity for males (rows 1–6) and females (rows 7–9). In the middle cell of each row, the top number is the
effect size (days), and the bottom number is the summed weight of the predictor across all fitted models. Boxplots show the 50% (boxes) and
95% (whiskers) confidence intervals around the effect sizes. Filled circles indicate that zero falls outside the 99.9% confidence interval for the
effect size of the predictor. Asterisks indicate that the predictor was identified as meaningful by the lasso analysis.
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Although courtship was a strong predictor of female
mating, 19 of 61 females that were not courted mated. In
these cases, the absence of courtship was offset by pre-
dictors including age and mass. Among females that were
not courted, those that mated were older (77.3 vs. 68.6 d
since capture; Welch’s t-test, P p 1:29#1025) and larger
(0.108 vs. 0.082 g; Welch’s t-test, P p 9:85#1024) than

those that did not mate. Eighteen of 19 matings without
courtship were achieved by ornamented males.

Female Mate Choice

Fifty-nine of 80 females (i.e., 74%) that mated did so with
the ornamented male. The predictors of whether a female
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Figure 4: Predictors of male courtship. In the middle cell of each row, the top number is the effect size of the predictor on the log odds ratio
of male courtship, and the bottom number is the summed weight of the predictor across all fitted models. Boxplots show the 50% (boxes) and
95% (whiskers) confidence intervals around the effect sizes. Effect sizes and confidence intervals in the boxplots are scaled to the maximum
difference in the observed data for the associated predictor. For example, female mass in mating trials ranged from 0.050 to 0.172 g. Thus, the
boxplot shows the effect of 0.122 g of female mass on the odds of male courtship. Scaling in this way does not change our confidence in
the effects of the predictors but shows the relative importance of each predictor for male courtship given the variability in that predictor
in the data. Filled circles, bull’s-eyes, and open circles indicate that zero falls outside the 99.9%, 99%, and 95% confidence intervals, respec-
tively, for the effect size of the predictor. Asterisks indicate that the predictor was identified as meaningful by the lasso analysis.
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chose the ornamented or nonornamented male are shown
in figure 6. Females assigned by cluster analysis to the late-
maturing group were 14.9 times more likely than those
assigned to the early-maturing group to choose orna-
mented males. The information theoretic analysis suggests
that females were more likely to choose males that began
to court first (6.0#) and males collected from the same or-
igin as the female (5.0#) and that in the absence of court-
ship, females were more likely to mate with ornamented
males (33#).

Strength of Prezygotic Reproductive Isolation

The above analysis suggests that the Oxford Schizocosa
population comprises two maturation groups. One group
includes early-maturing females and nonornamented males,
and the other includes late-maturing females and orna-
mented males. These groups have different habitat pref-
erences, and females prefer to mate with males from their
own groups. On the basis of our empirical data, we estimate
that the proportion of females from each maturation group
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Figure 5: Predictors of whether a female mates. In the middle cell of each row, the top number is the effect size of the predictor on the log
odds ratio of female mating, and the bottom number is the summed weight of the predictor across all fitted models. Boxplots show the 50%
(boxes) and 95% (whiskers) confidence intervals around the effect sizes (scaled as in fig. 4). Filled circles, bull’s-eyes, and open circles indicate
that zero falls outside the 99.9%, 99%, and 95% confidence intervals, respectively, for the effect size of the predictor. Asterisks indicate that
the predictor was identified as meaningful by the lasso analysis.
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choosing mates from the opposite group in the Oxford pop-
ulation is ∼0.07–0.18 (see the appendix). This is consistent
with the low level of genetic divergence that has been ob-
served between the male morphotypes.

Discussion

We analyzed data from laboratory rearing and mating ex-
periments on Schizocosawolf spiders collected from a poly-
morphic population in Oxford, Mississippi. We found that

early-maturing females were disproportionately likely to
choose mates of the early-maturing nonornamented male
morphotype, and both early-maturing females and non-
ornamented males were likely to be found on leaf litter.
Late-maturing females were more likely to choose mates
of the late-maturing ornamented male morphotype, and
both late-maturing females and ornamented males were
likely to be found on rocky substrate. Taken together, these
patterns suggest that the Oxford population is not a single
freely interbreeding population, as previously assumed
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Figure 6: Predictors of whether a female chooses an ornamented male. In the middle cell of each row, the top number is the effect size of the
predictor on the log odds ratio of the female choosing an ornamented male, and the bottom number is the summed weight of the predictor
across all fitted models. Boxplots show the 50% (boxes) and 95% (whiskers) confidence intervals around the effect sizes (scaled as in fig. 4).
Open circles indicate that zero falls outside the 95% confidence interval for the effect size of the predictor. Asterisks indicate that the pre-
dictor was identified as meaningful by the lasso analysis.

000 The American Naturalist

This content downloaded from 134.053.085.242 on June 28, 2018 14:19:32 PM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).



(Hebets and Vink 2007; Deng et al. 2014; Fowler-Finn et al.
2015), but instead comprises two groups with partial re-
productive isolation maintained by a combination of allo-
chrony, habitat use, and female mate choice.

The maturation times and habitat use of males in our
study are consistent with previous results. Hebets and Vink
(2007) found that nonornamented males in the Oxford
population matured earlier than ornamented males, and
Deng et al. (2014) reported that nonornamented males
were more likely to be found on leaf litter. However, our
study is the first to show that females in this population also
form two maturation groups, and we provide the first evi-
dence that mate preference and habitat use by females are
correlated with maturation time. The association of early-
maturing females with leaf litter and late-maturing females
with rocky substrate could be in part an effect of early juve-
nile habitat use in the field, as local prey availability and mi-
croclimate can affect maturation rates (Stratton 1984; Uetz
et al. 2002; Rundus et al. 2010) and can vary across habitat
types at small spatial scales (Widenfalk et al. 2016). How-
ever, origin does not fully explain the bimodality in matu-
ration time for females in our study, and exposure to other
spiders did not influence maturation times. Thus, differ-
ences in female maturation time must be due in part to in-
herent differences between the two female types. Because
we collected spiders over a short period (i.e., 3 days) when
only juveniles were present, we cannot confirm that matu-
ration times in the wild match those we recorded in the lab-
oratory. Future work that measures changes in male pheno-
type densities and female mate preferences in the wild
population over the course of a full mating season would
help to confirm our results.

The social environment influenced the probability of
male courtship in two ways. First, males almost always
courted when the competing male in their trial courted.
This pattern could result from each male monitoring the
behavior of the other (Clark et al. 2012, 2015). This would
not require that males recognize each other’s behavior as
courtship but simply that courtship by one male draws
the attention of the other to the presence of the female. Al-
ternatively, the consistency of courtship behavior between
males in the same trial could result from female receptivity
signals (e.g., a behavior or pheromone; Sullivan-Beckers
and Hebets 2014; Bell and Roberts 2017) that are perceived
by both males. Behavioral and chemical receptivity signals
can elicit or prolongmale courtship in other Schizocosa spe-
cies (Roberts andUetz 2005; Vaccaro et al. 2010). Addition-
ally, males were more likely to court females that lacked
prior social experience with conspecifics. This observation is
intriguing because it suggests that female receptivity signals
might vary with social experience. Females might, for exam-
ple, increase the production of a receptivity signal when per-
ceivedmate availability is low (Kokko andMonaghan 2001).

Perceived mate availability is known to affect female mat-
ing behavior in some Schizocosa species (Stoffer and Uetz
2015a, 2015b) and female responsiveness in other taxa
(Fowler-Finn and Rodríguez 2012a, 2012b). The density
of male spiders at our study site was high during the sam-
pling period, but the ability to moderate receptivity may
be important for females in marginal habitats or in years
when unfavorable conditions reduce the density of available
mates.
Males weremore likely to court some types of females than

others. In particular, males courted younger females more
often than older females. In the field, younger females are
less likely to have mated previously, and males may use a
female’s age as a surrogate for assessing virgin status (Gas-
kett 2007). Younger females may also produce more or dif-
ferent sex pheromones (Uhl and Elias 2011) and so attract
more male courtship. These two hypotheses are not mutu-
ally exclusive. Males were also more likely to court females
collected from rocky substrate. The reason for this is un-
known. However, we found weak evidence that females col-
lected from rocky substrate were more likely to mate. It is
possible that males are able to perceive increased female re-
ceptivity and increase their probability of courtship in re-
sponse.
We found weak evidence that the physical signaling en-

vironment (i.e., substrate type and light conditions) also in-
fluenced whether males courted. Consistent with previous
studies (Taylor et al. 2005; Gordon and Uetz 2011), males
were more likely to court in illuminated trials and on leaf
litter. This is not surprising, as both light and leaf litter fa-
cilitate signal transmission: visual signals cannot be per-
ceived in the dark, and leaf litter is a good transmitter of vi-
bratory sexual signals in Schizocosa (Elias et al. 2010).
The probability of mating for females also depended on

social factors and on the physical environment. Not sur-
prisingly, females that were courted were more likely to
mate. What is surprising, however, is that females mated
in 19 of 61 trials in which they were not courted. Eighteen of
these 19 matings were with ornamented males. Attempted
copulations of unreceptive females have been documented
in our study population (Hebets and Vink 2007) and in
other wolf spiders (Johns et al. 2009; Wilgers et al. 2009),
but such a high frequency of copulations without court-
ship has not been observed previously. Copulation without
courtship may be a strategy used by sexually aggressive
ornamented males when multiple males compete for the
same female. The density of the Oxford population can
be as great as 300 individuals per square meter (Fowler-
Finn and Hebets 2011b), so males may often compete di-
rectly for females in the field. It is also possible that females
in these trials exhibited receptivity signals without being
courted. Females that mated without courtship were older
and larger than females that did not mate, and both age
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and size correlate positively with receptivity to mating. Ad-
ditional studies are needed to replicate and explain this re-
sult.

In addition to whether a female was courted, female mat-
ing probability depended on several other factors. Older
females were more likely to mate than younger females.
This is consistent with theory suggesting that choosiness
should decrease when females expect fewer future mating
opportunities (Moore and Moore 2001). Our information
theoretic approach suggests that females were more likely
to mate if they were exposed to other spiders as juveniles,
and the lasso approach suggests that they were more likely
to mate if they were exposed to males as juveniles. Because
females exposed to males were necessarily exposed to other
spiders, these predictors are correlated (Pearson’s correla-
tion coefficient r p 0:425), and we cannot be confident
about which predictor affects female mating. However, it
seems likely that either previous exposure to other spiders
or previous exposure to males increases female mating
probability, independent of the role played by exposure sta-
tus in inducing male courtship. Finally, we found weak ev-
idence that females were more likely to mate in trials on leaf
litter than on rocks. Again, this may not be surprising, as
leaf litter provides a substrate through which the vibratory
signals of Schizocosa transmit effectively (Elias et al. 2010).

Different female maturation groups in our study popula-
tion have different mate preferences. Early-maturing fe-
males prefer males of the early-maturing nonornamented
morphotype, and late-maturing females prefer males of the
late-maturing ornamented phenotype. In addition, our in-
formation theoretic analysis suggests that females tend to
choose mates from the same substrate that they were col-
lected from themselves. Past work in this population found
that females prefer mates with the same morphotypes as
their fathers and recognized that this preference could result
in assortative mating (Fowler-Finn et al. 2015). Our results
suggest that assortative mating may be further promoted
by allochrony and differences in habitat use between groups.

Results from our study, in combination with those from
previous work, lead us to a new hypothesis: the Oxford Schi-
zocosa population is not a single panmictic population but
rather an incipient species pair with assortative mating me-
diated by a combination of allochrony, habitat use, and fe-
male mate choice. The divergence of ornamented and non-
ornamented males in the Oxford Schizocosa population is
likely to be a separate evolutionary event from the divergence
of S. ocreata and S. rovneri in the Ohio Valley. Genetic data
show that both ornamented and nonornamented spiders in
the Oxford population are more closely related to S. rovneri
than to S. ocreata (Hebets and Vink 2007; Fowler-Finn et al.
2015). This means that the ornamented and nonornamented
morphs in Oxford are not simply sister species of S. ocreata
and S. rovneri, respectively.Moreover, the directions of diver-

gence in morphology and maturation time in the Oxford
and Ohio Valley population pairs do not coincide. In Ox-
ford ornamented morphs mature later than nonornamented
morphs, but in the Ohio Valley ornamented S. ocreata ma-
ture earlier than nonornamented S. rovneri (Stratton 1984).
However, this latter evidence must be taken with caution,
asmaturation times can evolve rapidly under selection (Hau-
gen 2000; van Wijk et al. 2013).
In summary, the patterns we uncovered suggest that a

variety of mechanisms contribute to assortative mating in
a population of Schizocosa wolf spiders with two distinct
male morphotypes. Our results show that the population
includes two female forms, early and late maturing, that
are strongly associated with nonornamented and orna-
mented males, respectively. Given the lack of genetic dif-
ferentiation between the two male morphotypes (Hebets
and Vink 2007; Fowler-Finn et al. 2015), much of the ex-
tensive research on this population (Hebets and Vink 2007;
Fowler-Finn and Hebets 2011a, 2011b; Fowler-Finn et al.
2013, 2015; Pesek et al. 2013; Deng et al. 2014) has assumed
that it is a single panmictic group. Our results provide a
new context in which studies of this population should be
conducted and interpreted.
How—and indeed whether—speciation can occur in the

absence of complete geographic isolation has been a mo-
tivating question in evolutionary biology for more than
100 years (Mayr 1963; Coyne and Orr 2004; Fitzpatrick
et al. 2008). Much of what we now know comes from the
intensive study of a few clades with replicated recent or
ongoing speciation events (e.g., three-spined sticklebacks
[Schluter and Mcphail 1992; Schluter 1994], rift lake cich-
lids [Allender et al. 2003], and Darwin’s finches [Grant
and Grant 2014]). Our results provide new evidence for
an ongoing speciation event in a population of Schizocosa
wolf spiders. The pattern of morphological divergence in
this population is similar to that found in other Schizocosa
species pairs, suggesting that other speciation events in the
clade may have involved similar mechanisms. We believe
this genus can be a valuable addition to the set of systems
in which speciation is commonly studied. Future work on
the phylogeny and phylogeography of the genus will help
us to better understand the cause and extent of its diversi-
fication.
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